Quarkonia and Vector Bosons measured with the ATLAS detector at the LHC

Peter Steinberg, for the <u>ATLAS Collaboration</u> Brookhaven National Laboratory June 15, 2011 BNL Quarkonia Workshop

J/psi and Z results: Phys.Lett. B697:294-312,2011

W results: http://cdsweb.cern.ch/record/1353227

Special thanks to Helio Takai & Rikard Sandstrom

The ATLAS Detector

Integrated luminosity

9.7 µb⁻¹ delivered, 9.2 µb⁻¹ recorded by ATLAS

J/ψ suppression

Mocsy & Petreczky (2007)

state	χ_c	ψ'	J/ψ	Υ'	χ_b	Υ
T_{dis}	$\leq T_c$	$\leq T_c$	$1.2T_c$	$1.2T_c$	$1.3T_c$	$2T_c$

Color screening predicts quarkonia states to melt at different temperatures,

At high densities, also expect some J/ψ regeneration (at low p_T)

Suppression factor observed to drop by ~2 between peripheral and central events: similar over x10 in √s_{NN}

5

Signal extraction & uncertainties

- Use pairs of opposite sign muons with cuts:
 - $|\eta|$ <2.5, p_T>3 GeV
- Yield extraction based on sideband subtraction
 - [2.95-3.25] GeV center
 - [2.4-2.8], [3.4-3.8] GeV sidebands
- Cross check with unbinned maximum likelihood fit, with mass resolution as free parameter

7

Tracking systematics

- Efficiency varies with collision centrality
 - up to 8% between central and peripheral collisions
- Systematic uncertainties estimated by detailed comparison of track properties vs. MC
 - Tracks with <2 pixel hits
 - Tracks with <6 SCT hits
 - Tracks with >1 B-layer "hole"
 - Tracks with >1 SCT "hole"
- Determined to be 1-3%, depending on centrality

Ω

Yield ratios vs. Glauber predictions

 Ratios of J/ψ yields compared to similar ratio calculated from Glauber calculation

- Using simple nuclear geometry to predict rates assuming yield scales with binary collisions
 - Main uncertainty is fraction of total cross section f=98±1% after stringent selection cuts

Systematic shortfall vs. centrality!

J/ψ Yields

Centrality	$N^{\mathrm{meas}}(J/\psi)$	$\epsilon(J/\psi)_c/$	Systema	atic Uncerta	inty
		$\epsilon(J/\psi)_{40-80}$	Reco. eff.	Sig. extr.	Total
0-10%	190 ± 20	0.93 ± 0.01	6.8 %	5.2 %	8.6 %
10-20%	152 ± 16	0.91 ± 0.02	5.3~%	6.5~%	$\mid 8.4 \% \mid$
20-40%	180 ± 16	0.97 ± 0.01	3.3~%	6.8~%	7.5 %
40-80%	91 ± 10	1	2.3~%	5.6 %	\mid 6.1 % \mid

Yields within kinematic acceptance: $|\eta_{\mu}|$ <2.5, $p_{T,\mu}$ >3 GeV

Absolute efficiency not used since defined as a ratio relative to the most peripheral bin (40-80% here)

Statistical error on efficiency ratio from finite MC statistics

Suppression of J/ψ Phys Lett. B697 294-312

- Dividing yield ratio by ratio of binary collisions gives the "normalized" yield
 - Similar to "R_{CP}" in heavy ion literature (ratio of central to peripheral)
- All ratios and errors scaled by measured yield in 40-80%
 - Statistical & systematic errors not fully propagated

Comparison with lower energy data

PHENIX data on R_{AA} (relative to p+p) recombined and ratios taken w.r.t. 40-93% bin, errors include uncorrelated & estimate of N_{coll} errors

Centrality dependence of suppression appears invariant with beam energy

- Intriguing that the ATLAS & PHENIX centrality dependence is so similar despite
 - Different CM energy (x14 between RHIC and LHC energies)
 - Different initial energy density (x3 estimated by ALICE lower bound)
 - Different kinematic ranges ($p_T>0$ GeV for PHENIX, $p_T>6.5$ GeV for ATLAS)
 - No correction for B feed-down (4% at PHENIX, 20% for ATLAS estimate) from CMS p+p J/ ψ paper), and no accounting for charm feeddown.

Thanks to J. Nagle for references!

Many moving parts

- Should J/ψ suppression be affected by slowing of c and cbar?
- Should the J/ψ's from B's be suppressed by b quenching?
- Regeneration might be an issue, but probably not at the p_T range measured by ATLAS
- Given this, the energy independence of suppression (from NA50 to ATLAS) seems difficult to achieve by a simple density dependence

J/ψ R_{AA} vs. N_{part} Comparison

more like 0.5±0.1...

STAR \sqrt{s} =200 GeV, J/ ψ 5 < p_T < 8 GeV/c Stronger suppression seen in CMS than at STAR

CMS sees a R_{cp}~1/3 for prompt, so we are broadly compatible, but clearly requires a direct check!

ATLAS vs. ALICE

~Orthogonal p_T and **η** ranges, but very different centrality dependence!

Connection or coincidence? Some observations

"RCP" scales for:

1. inclusive yields (ALICE vs. RHIC, N_{part})

2. J/ψ (ATLAS vs. PHENIX, N_{coll})

Can change from N_{part} to N_{coll}, do results still ~scale?

 J/Ψ 's behave similar to inclusive hadrons (not the first time)

Connection or coincidence? Some observations

"RCP" scales for:

1. inclusive yields (ALICE vs. RHIC, N_{part})

2. J/ψ (ATLAS vs. PHENIX, N_{coll})

Can change from N_{part} to N_{coll}, do results still ~scale?

 J/Ψ 's behave similar to inclusive hadrons (not the first time)

Connection or coincidence? Some observations

Suppression of high $p_T J/\psi$ similar to that seen for inclusive jets

Z reconstruction in heavy ion collisions

- Muon cuts for opposite sign pairs:
 - $|\eta|$ <2.5, p_T>20 GeV
 - $|\eta_1 + \eta_2| > 0.01$ to reject cosmic ray muons
 - [66,116] GeV mass window
- Relative yield calculation similar to J/ψ
 - All systematics have been assumed to be the same as with J/ψ
 - Conservative assumptions
- 38 Z candidates found

Z centrality dependence

 Z's are not expected to be suppressed, but might be affected by shadowing

- Recent calculations show little effect from this
- Statistics too low for any quantitative statements.

Extracting W in HI collisions

In ATLAS, missing energy scales with the total energy (like p+p!)
In central events you can get large missing E_T

More straightforward to measure the shoulder from the muons from W decay, dominates spectrum above ~30 GeV

Extracting W yields in HI collisions

- With 2/3 statistics, a very clear signature of W's!
- Analysis procedure:
 - Remove muons from Z decays
 - Veto decays in flight
 - Generate template from W decays in 2.76 TeV p+p MC
 - Fit a function to describe background (primarily heavy flavor)
 - Unbinned fit combining background fit plus W template

Wednesday, June 15, 2011 23

- Fits performed vs collision centrality, with background fit redone for each bin (in case HF spectrum is modified)
- Good statistics except in peripheral bin

Centrality	$N_W^{ m fit}$
40-80%	12^{+13}_{-12}
20-40%	118^{+17}_{-24}
10-20%	97 ⁺¹⁶ ₋₁₈
0-10%	165^{+23}_{-25}
W (all)	399+36

Centrality dependence of W yields

- Centrality dependence pinned on central data rather than peripheral
 - RPC VS. RCP
- Fit to a flat line gives unity, with good χ^2
- Consistent with binary collision scaling

1-centrality

Charge dependence

- d/u asymmetry from n/p ratio implies more W- than W+
- Theory (Paukunnen & Salgado)
 predict 0.90±0.04 for Pb+Pb
 - No nuclear modification assumed
 - pp gives 1.65 and nn gives 0.62 from NNLO QCD + MSTW2008
- We observe

$$R_{W^{+}/W^{-}} = \frac{198^{+25}_{-26}}{204^{+27}_{-31}} = 0.97^{+0.18}_{-0.19}$$

 Nothing anomalous but requires higher statistics

Centrality	$N_W^{ m fit}$
40-80%	12^{+13}_{-12}
20-40%	118^{+17}_{-24}
10-20%	97^{+16}_{-18}
0-10%	165^{+23}_{-25}
W^-	204^{+27}_{-31}
W^+	198^{+25}_{-26}
W (all)	399+36

26

Wednesday, June 15, 2011 26

Muon charge asymmetry

- Precision asymmetry measurement gives information on nPDFs
- First attempt with existing statistics for p_T>30 GeV
 - Background from b-bbar contributes at 19% level, included as systematic error
- Theory curve from Paukunnen and Salgado, including nPDF
- No asymmetry observed within statistical errors
 - Measurement will improve with increasing luminosity

$$A_{\mu} = \frac{d\sigma_{W_{\mu^{+}}}/d\eta - d\sigma_{W_{\mu^{-}}}/d\eta}{d\sigma_{W_{\mu^{+}}}/d\eta + d\sigma_{W_{\mu^{-}}}/d\eta}$$

Wednesday, June 15, 2011 27

W/Z ratio

Useful test of the standard model and PDFs

Corrections for acceptance and efficiency taken from MC

Predictions

• SM prediction for Pb+Pb: $R_{W/Z} = 11.5 \pm 0.7 - no$ effects from nPDFs

• p+p: $R_{W/Z} = 11.3 \pm 0.6$

• n+n: $R_{W/Z} = 10.8 \pm 0.6$

• We measure: $R_{W/Z} = 10.5 \pm 2.3$

Good agreement with standard model prediction

Conclusions

- Measurements of J/ψ, Z and W
- No separation of prompt and non-prompt J/ψ yet
 - In plan for next iteration on 2010 data
- Without this, still see a clear suppression of factor of 2 relative to peripheral events
 - Similar to lower energy HI data (albeit at low pT)
 - Similar to our jet rates
- Vector bosons also measured
 - W centrality dependence shows binary collision scaling
 - Z statistics preclude any strong statements
 - W+/W⁻ and W/Z ratios consistent with SM
- Looking forward to 5x increase in luminosity in 2011!